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Introduction

We are witnessing an intelligent computing revolution led by Large Language Models (LLMs).

ChatGPT (GPT-3.5&4) acquired 1 million users only five days after the launching, and its

applications have a broad spectrum ranging from education and legal compliance to content

creation and robotics. The model’s versatility stems from not only the inherent nature of

language as an interface of human minds, but also the model’s ability to learn basic reasoning

mechanisms embedded in languages. However, this linguistic and logical intelligence comes at

a huge economic and environmental cost [1], and potentially cause social inequality [2].

Spatial Intelligence = Perception + Physical World Model + Planning&Control
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Figure 1: My vision for advancing spatial intelligence is rooted in my prior works on low&mid-

level perception tasks. Building on this, I aim to develop a physical world model that transforms

perceived information into a representation that contains physic rules explicitly, and integrating

it with cutting-edge control algorithms to enhance the capabilities of autonomous systems.

Instead, autonomous systems can already perform various tasks without abstract reasoning.

Equipped with classical planning and control algorithms, ground robots can navigate and avoid

obstacles by perceiving static scenes and dynamic objects, such as moving cargoes in a factory or

vacuuming a room; while industrial robotic arms can pick and sort objects based on only shapes,

weights, and positions of objects. Although these systems are typically tailored for specific

use cases, they have demonstrated the potential of spatial intelligence, which is orthogonal to

linguistic and logical intelligence. Developing generic spatial intelligent systems that interact

with the physical world and understand the underlying principles could have significant social

impacts. The impacts extend beyond robotics, with other applications such as mixed reality,

civil engineering, agriculture and assistants for the blind and visually impaired community.
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Previous Researches

In pursuit of this goal, my previous researches focus on low&mid-level perceptions. Perception is

the foundation of spatial intelligence that acquires, interprets, and understands sensory informa-

tion from its environment. The perception tasks, including but not limited to 3D reconstruction,

stereo matching, optical flow, and segmentation, have achieved significant progress in the past

decade, driven by deep neural networks.

Distinct from the works that attempt to rediscover the physical rules implicitly through

training on large amount of data, my researches adopts a first-principles strategy: I made

minimization differentiable for training and leveraged neural networks only for representation

learning. This innovative methodology embeds physical rules through objective functions to be

minimized, enabling the learning of a unified model that is proficient in multiple perception

tasks and capable of generalizing to new tasks in a zero-shot manner. In the rest of this section,

I will chronologically introduce this unique line of researches:

• Learning 3D Reconstruction with Multi-View Geometry. The first challenge for

a spatial intelligent system is the precise determination of its positions and understanding

the 3D structure of the environments. This challenge was conventionally addressed by Si-

multaneous Localization and Mapping (SLAM) or Structure-from-Motion (SfM) systems,

while more recent advances have explored neural network-based solutions [3, 4].
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Figure 2: The BA-Net architecture. It contains a backbone network, a basis depth maps gener-

ation decoder, a feature pyramid decoder, and a differentiable bundle adjustment [5] Layer.

My research represents a pioneering effort in bridging the gap between these two method-

ologies. I innovatively combined the principles of multi-view geometry [6] with convolu-

tional neural networks (CNNs). A feature-metric projection error is defined on features

extracted by the network, serving as the objective function for 3D reconstruction. The

network also generates a basis representation for depth maps, to further regularize the

minimization. This novel methodology was highlighted at ICLR 2019 as an oral presen-

tation [7]. Significantly, the concept of minimizing the feature-metric error has set a new

standard, influencing many subsequent studies on various topics [8, 9, 10, 11].

• Generic Low&Mid-Level Perceptions. Understanding the static environment and its

own position is merely the initial stage for a spatial intelligent system to interact with its

surroundings. In more common dynamic environments, these systems must advance to

perceiving scene dynamics, caused by either the active movement of objects or the passive

movement manipulated by external forces, such as robotic arms. To facilitate this dynamic
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perception capability, it is critical to not only estimate the structure and movement of

objects through stereo and optical flow techniques but also to effectively segment image

pixels into distinct objects. All these processes should be executed simultaneously to

ensure immediate and appropriate interaction with dynamic environments.

(a) LSM is task generic. (b) A single minimization iteration of LSM.

In this research, I addressed these tasks in a unified framework. These tasks were generally

formulated as a minimization problem of minxD(x) + R(x), where x is the solution,

D(x) is the data term, and R(x) is the regularization term. With stereo matching as

the example, x is the disparities, D(x) is the consistency between left and right views,

and R(x) enforce the spatial smoothness of x, such as the L1 spatial smoothness. To

preserve the first principle of a task explicitly within the network, D(x) is preserved

because it is well designed following the first principle of a task, while R(x) is replaced

with a learnable subspace constraint, because it is heuristic. The subspace generation

incorporates both the single image features and the derivatives of D(x), and it is the

key to enable a single network for simultaneous multi-task perceptions with fully shared

parameters. This Learning Subspace Minimization (LSM) framework not only facilitates

instant multi-task perception of dynamic scenes but also enhances the extendability of

spatial intelligent systems. For example, new tasks can be integrated in a plug-and-play

manner as long as their data terms can be formulated into the objective functions. This

research was presented at CVPR 2020 as an oral presentation [12].

• Image Enhacement. Spatial intelligent systems are supposed to operate in diverse

environments, thus enhancing sensory inputs can substantially improve their perception

capabilities. For instance, to enable a patrol robot to function continuously for 24 hours, it

is beneficial to denoise and deblur input images during the night, before they are processed

by subsequent perception tasks.

(a) Byaer Pattern

of RAW images. (b) Solving image enhancement problems on RAW images.

In this research, I revisited these image enhancement problems that share a unifed formu-

lation of minx,k ∥y−(k⊗x+n)∥, where y is the input image, x is the enhanced image, n is
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the noise, and k is the kernel map which involves degradation kernels for super-resolution

or motion blur kernels for motion deblur. The kernel map k is spatially-variant and should

be solved jointly with the enhanced output. To this end, I extended the LSM framework

to address this dual-variable problem and initialized it with a closed-form solution. This

work is also the first that operates solely on RAW images and has achieved significantly

better results at a lower computational cost. The RAW images have a distinct Bayer

Pattern from RGB images, and are directly exported from image sensors without any

post-processing. Therefore, image enhancement on RAW images can serve as the retina

of a spatial intelligent system and be connected with the subsequent perception tasks in

an end-to-end pipeline. This research was published at CVPR 2022 [13].

Besides the above researches that have set a foundation for my pursuit of a physical world

model for spatial intelligence. I also did two non-learning based researches that can also poten-

tially contribute to this goal:

• Robust Initialization for Monocular SLAM. Most robotics systems incorporate var-

ious depth sensors for localization tasks, yet these sensors, including Direct-Time-of-Flight

(dToF) sensors, have inherent challenges such as narrow fields of view and limited sens-

ing ranges. In contrast, using a monocular camera for localization in 3D environments

offers benefits like lower power usage and no need to calibrate and synchronize between

sensors, which are advantageous particularly for compact robotics and wearable devices.

To this end, I have developed an innovative rank-1 factorization-based algorithm for the

initialization process within a monocular Simultaneous Localization and Mapping (SLAM)

system [14]. This algorithm effectively and robustly converts a set of 2D trajectories into

3D point clouds with given rotations, improving the efficiency and robustness of the overall

localization systems in Robotics or Mixed Reality applications.

• Fish-eye and 360◦ Cameras. Fish-eye and 360◦ cameras are common in Robotics and

Mixed Reality. However, algorithms developed for perspective (pinhole) cameras often

do not generalize well in these settings. Typically, fish-eye and 360◦ images are rectified

into perspective images for further processing. Instead, I proposed a motion estimation

technique tailored for 360-degree videos in [15]. This technique directly minimizes an

objective function defined on a sphere, surpassing the performance of the commonly used

five-point algorithm designed for perspective cameras. Additionally, I developed a spherical

version of the As-Rigid-As-Possible warping technique. This work has provided me with

profound insights into ultra-wide-angle cameras which can contribute future researches on

Robotics and Ego-centric perception.

Research Plan

Building upon my previous researches in perception tasks, I am interested in pursuing a physical

world model that transforms perceived information into a representation explicitly modeling

physical rules and equations. This physical world model serves as an abstract medium for

planning and control algorithms to interact with the environment. I also plan to continue

working on perception topics such as self-supervised pre-training and segmentation. These

areas are not only important as standalone tasks but also contributes to the exploration of the

physical world model.
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• Self-supervised Pre-training. Self-supervised pre-training is a milestone approach for

computer vision, it leverages unlabeled data to learn feature representations. Existing

methods, such as DINO [16] and Masked AutoEncoder [17], are primarily designed for high-

level perception tasks like image and video classification. However, there remains an open

question regarding the learning of visual feature representations in a self-supervised manner

for low&mid-level perception tasks. To address this, we must consider what constitutes

a good feature representation for these tasks. Drawing on my previous experience, one

potential answer could lie in achieving equivariance [18] to both geometric and photometric

transformations. This is crucial for spatial intelligent systems, because it needs to interact

with the same environment or objects under varying spatial and illumination conditions.

(a) DINO (b) MAE (c) CLIP

Figure 5: Different self-supervised pre-training strategies: (a) DINO (Self-Distillation), (b) MAE

(Masked Image Model) and (c) CLIP (Contrastive Learning). It remains an open question about

learning equivariant features for low&mid-level perceptions from pre-training.

• Segmentation. Another direction I plan to pursue is a deeper dive into segmentation.

Rather than relying on annotations in the first frame as in video object segmentation,

which I worked on before, I aim to achieve segmentation through alternative cues, such as

motion movement and geometric structures. Although recent research primarily focuses

on semantic segmentation or instance segmentation, grouping points into objects without

semantic labels can already serve as an intermediate representation for spatial intelligent

systems. For instance, recognizing the category of an object is not always necessary for

robotic arm manipulation. A potential solution is to reformulate conventional segmenta-

tion algorithms, such as the normalized cut [19], as a differentiable component within a

neural network. While a previous work has incorporated Normalized cut into the training

loss [20], to the best of my knowledge, integrating it into the model remains unexplored.

Figure 6: The difference between a) segmentation: grouping pixels into segments, b) semantic

segmentation: classifying each pixel to a semantic category, and c) instance segmentation: clas-

sifying each pixel to a category and differentiating between instances of the same category.
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• Physical World Model Learning for Robotics Control. Beyond specific perception

tasks, I am committed to the goal of enabling spatial intelligent systems to understand

the physical world and its underlying principles. Once equipped with this capability, a

spatial intelligent system can interact more efficiently with the environment using both

differentiable optimization-based controllers like Motion Predictive Control (MPC) [21]

and the more recent RL algorithms [22, 23, 24]. To progress towards this goal step-by-step,

I have devised a three-phase plan with a series of checkpoints and milestones.

– In the first phase, I will learn and verify a physical world model on the task of

future frame prediction [25], a popular auxiliary task in robotics. Given the recent

release of the Open-X-Embodiment dataset [26], being able to predict future frames

on diverse sequences could prove the physical world model’s effectiveness without

involving actual planning and control.

Figure 7: Future frame prediction and the Open-X-Embodiment dataset.

– Once the physical world model has been validated, the next phase will integrate it

with controllers inside a simulator. Recent advancements in simulators, such as Isaac

Sim [27] and Habitat [28], have narrowed the gap between synthetic and real-world

environments. Therefore, training and testing the physical world model jointly with

a controller in a simulator could scale up the experiments and accelerate the research.

Figure 8: Realistic Simulation from Issac Sim (left) and Habitat(right).

– Finally, I will transfer knowledge and models learned in the simulator to real-world

scenarios for tasks including but not limited to robotic arm manipulation and indoor

navigation. To compensate the potential reality gap between the simulator and the

real world, I will explore efficient online adaptation algorithms [29, 30]. Besides,

imitation learning [31, 32, 33] that replicates human-like actions from demonstration

could also be explored for specific tasks such as grasping.
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This three-phase plan establishes clear checkpoints and milestones, allowing for review and

refinement at each stage, advancing towards the goal in an efficient and solid manner.

Collaborations. I plan to establish broader collaborations with both industrial and academic

researchers that align with my research goals. To initiate this, I will leverage my existing

network, encompassing professionals from big corporations like Apple, Meta, Google, Microsoft,

and NVIDIA, as well as respected academic institutions including SFU, UIUC, HKUST, CUHK,

PKU and the University of Birmingham. Specifically, I aim to foster partnerships that will en-

able the sharing of resources, data, and expertise, contributing to advancements in learning

physical world model for spatial intelligence. I am also looking forward to expanding my collab-

oration networks through conferences, talks, as well as the existing faculty members within the

department. Through these collaborative efforts, I can create a synergy that not only elevates

my research but also contributes significantly to the research community.

Founding Sources. I plan to apply for NSERC Discovery Grants in my first year based on

my previous researches and the research plan. I also plan to seek fundings from industry sources,

such as Google Research Scholar Program and Meta Research Awards.
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